Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34210796

RESUMO

Over the past half-century, ultrasound imaging has become a key technology for assessing an ever-widening range of medical conditions at all stages of life. Despite ultrasound's proven value, expensive systems that require domain expertise in image acquisition and interpretation have limited its broad adoption. The proliferation of portable and low-cost ultrasound imaging can improve global health and also enable broad clinical and academic studies with great impact on the fields of medicine. Here, we describe the design of a complete ultrasound-on-chip, the first to be cleared by the Food and Drug Administration for 13 indications, comprising a two-dimensional array of silicon-based microelectromechanical systems (MEMS) ultrasonic sensors directly integrated into complementary metal-oxide-semiconductor-based control and processing electronics to enable an inexpensive whole-body imaging probe. The fabrication and design of the transducer array with on-chip analog and digital circuits, having an operating power consumption of 3 W or less, are described, in which approximately 9,000 seven-level feedback-based pulsers are individually addressable to each MEMS element and more than 11,000 amplifiers, more than 1,100 analog-to-digital converters, and more than 1 trillion operations per second are implemented. We quantify the measured performance and the ability to image areas of the body that traditionally takes three separate probes. Additionally, two applications of this platform are described-augmented reality assistance that guides the user in the acquisition of diagnostic-quality images of the heart and algorithms that automate the measurement of cardiac ejection fraction, an indicator of heart health.


Assuntos
Inteligência Artificial , Ultrassonografia , Acústica , Imageamento Tridimensional , Sistemas Microeletromecânicos , Especificidade de Órgãos
3.
Cell Rep ; 17(4): 1053-1070, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27760312

RESUMO

Tuberous sclerosis complex (TSC) is a neurodevelopmental disease caused by TSC1 or TSC2 mutations and subsequent activation of the mTORC1 kinase. Upon mTORC1 activation, anabolic metabolism, which requires mitochondria, is induced, yet at the same time the principal pathway for mitochondrial turnover, autophagy, is compromised. How mTORC1 activation impacts mitochondrial turnover in neurons remains unknown. Here, we demonstrate impaired mitochondrial homeostasis in neuronal in vitro and in vivo models of TSC. We find that Tsc1/2-deficient neurons accumulate mitochondria in cell bodies, but are depleted of axonal mitochondria, including those supporting presynaptic sites. Axonal and global mitophagy of damaged mitochondria is impaired, suggesting that decreased turnover may act upstream of impaired mitochondrial metabolism. Importantly, blocking mTORC1 or inducing mTOR-independent autophagy restores mitochondrial homeostasis. Our study clarifies the complex relationship between the TSC-mTORC1 pathway, autophagy, and mitophagy, and defines mitochondrial homeostasis as a therapeutic target for TSC and related diseases.


Assuntos
Dinâmica Mitocondrial , Mitofagia , Modelos Biológicos , Neurônios/metabolismo , Neurônios/patologia , Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/patologia , Animais , Autofagia , Axônios/metabolismo , Respiração Celular , Humanos , Lisossomos/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Mutação/genética , Células-Tronco Pluripotentes/metabolismo , Terminações Pré-Sinápticas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo
5.
Astrobiology ; 13(6): 560-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23734755

RESUMO

Life beyond Earth may be based on RNA or DNA if such life is related to life on Earth through shared ancestry due to meteoritic exchange, such as may be the case for Mars, or if delivery of similar building blocks to habitable environments has biased the evolution of life toward utilizing nucleic acids. In this case, in situ sequencing is a powerful approach to identify and characterize such life without the limitations or expense of returning samples to Earth, and can monitor forward contamination. A new semiconductor sequencing technology based on sensing hydrogen ions released during nucleotide incorporation can enable massively parallel sequencing in a small, robust, optics-free CMOS chip format. We demonstrate that these sequencing chips survive several analogues of space radiation at doses consistent with a 2-year Mars mission, including protons with solar particle event-distributed energy levels and 1 GeV oxygen and iron ions. We find no measurable impact of irradiation at 1 and 5 Gy doses on sequencing quality nor on low-level hardware characteristics. Further testing is required to study the impacts of soft errors as well as to characterize performance under neutron and gamma irradiation and at higher doses, which would be expected during operation in environments with significant trapped energetic particles such as during a mission to Europa. Our results support future efforts to use in situ sequencing to test theories of panspermia and/or whether life has a common chemical basis.


Assuntos
Vida , Tolerância a Radiação , Marte
6.
Electrophoresis ; 33(23): 3397-417, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23208921

RESUMO

In order for next-generation sequencing to become widely used as a diagnostic in the healthcare industry, sequencing instrumentation will need to be mass produced with a high degree of quality and economy. One way to achieve this is to recast DNA sequencing in a format that fully leverages the manufacturing base created for computer chips, complementary metal-oxide semiconductor chip fabrication, which is the current pinnacle of large scale, high quality, low-cost manufacturing of high technology. To achieve this, ideally the entire sensory apparatus of the sequencer would be embodied in a standard semiconductor chip, manufactured in the same fab facilities used for logic and memory chips. Recently, such a sequencing chip, and the associated sequencing platform, has been developed and commercialized by Ion Torrent, a division of Life Technologies, Inc. Here we provide an overview of this semiconductor chip based sequencing technology, and summarize the progress made since its commercial introduction. We described in detail the progress in chip scaling, sequencing throughput, read length, and accuracy. We also summarize the enhancements in the associated platform, including sample preparation, data processing, and engagement of the broader development community through open source and crowdsourcing initiatives.


Assuntos
Semicondutores , Análise de Sequência de DNA/métodos , DNA/análise , DNA/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Humanos , Análise de Sequência de DNA/instrumentação
7.
PLoS One ; 6(7): e22751, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21799941

RESUMO

An ongoing outbreak of exceptionally virulent Shiga toxin (Stx)-producing Escherichia coli O104:H4 centered in Germany, has caused over 830 cases of hemolytic uremic syndrome (HUS) and 46 deaths since May 2011. Serotype O104:H4, which has not been detected in animals, has rarely been associated with HUS in the past. To prospectively elucidate the unique characteristics of this strain in the early stages of this outbreak, we applied whole genome sequencing on the Life Technologies Ion Torrent PGM™ sequencer and Optical Mapping to characterize one outbreak isolate (LB226692) and a historic O104:H4 HUS isolate from 2001 (01-09591). Reference guided draft assemblies of both strains were completed with the newly introduced PGM™ within 62 hours. The HUS-associated strains both carried genes typically found in two types of pathogenic E. coli, enteroaggregative E. coli (EAEC) and enterohemorrhagic E. coli (EHEC). Phylogenetic analyses of 1,144 core E. coli genes indicate that the HUS-causing O104:H4 strains and the previously published sequence of the EAEC strain 55989 show a close relationship but are only distantly related to common EHEC serotypes. Though closely related, the outbreak strain differs from the 2001 strain in plasmid content and fimbrial genes. We propose a model in which EAEC 55989 and EHEC O104:H4 strains evolved from a common EHEC O104:H4 progenitor, and suggest that by stepwise gain and loss of chromosomal and plasmid-encoded virulence factors, a highly pathogenic hybrid of EAEC and EHEC emerged as the current outbreak clone. In conclusion, rapid next-generation technologies facilitated prospective whole genome characterization in the early stages of an outbreak.


Assuntos
Surtos de Doenças , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/patogenicidade , Infecções por Escherichia coli/epidemiologia , Genômica/métodos , Análise de Sequência de DNA/métodos , Adulto , Evolução Molecular , Alemanha/epidemiologia , Humanos , Filogenia , Estudos Prospectivos , Fatores de Tempo
8.
Nature ; 475(7356): 348-52, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21776081

RESUMO

The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.


Assuntos
Genoma Bacteriano/genética , Genoma Humano/genética , Genômica/instrumentação , Genômica/métodos , Semicondutores , Análise de Sequência de DNA/instrumentação , Análise de Sequência de DNA/métodos , Escherichia coli/genética , Humanos , Luz , Masculino , Rodopseudomonas/genética , Vibrio/genética
9.
Proc Natl Acad Sci U S A ; 106(34): 14195-200, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19617544

RESUMO

We present a droplet-based microfluidic technology that enables high-throughput screening of single mammalian cells. This integrated platform allows for the encapsulation of single cells and reagents in independent aqueous microdroplets (1 pL to 10 nL volumes) dispersed in an immiscible carrier oil and enables the digital manipulation of these reactors at a very high-throughput. Here, we validate a full droplet screening workflow by conducting a droplet-based cytotoxicity screen. To perform this screen, we first developed a droplet viability assay that permits the quantitative scoring of cell viability and growth within intact droplets. Next, we demonstrated the high viability of encapsulated human monocytic U937 cells over a period of 4 days. Finally, we developed an optically-coded droplet library enabling the identification of the droplets composition during the assay read-out. Using the integrated droplet technology, we screened a drug library for its cytotoxic effect against U937 cells. Taken together our droplet microfluidic platform is modular, robust, uses no moving parts, and has a wide range of potential applications including high-throughput single-cell analyses, combinatorial screening, and facilitating small sample analyses.


Assuntos
Microfluídica/instrumentação , Microfluídica/métodos , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Emulsões , Corantes Fluorescentes/química , Humanos , Técnicas Analíticas Microfluídicas/métodos , Mitomicina/química , Mitomicina/farmacologia , Reprodutibilidade dos Testes , Fatores de Tempo , Células U937
10.
J Infect Dis ; 199(5): 693-701, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19210162

RESUMO

BACKGROUND: Minor (i.e., <20% prevalence) drug-resistant human immunodeficiency virus (HIV) variants may go undetected, yet be clinically important. OBJECTIVES: To compare the prevalence of drug-resistant variants detected with standard and ultra-deep sequencing (detection down to 1% prevalence) and to determine the impact of minor resistant variants on virologic failure (VF). METHODS: The Flexible Initial Retrovirus Suppressive Therapies (FIRST) Study (N = 1397) compared 3 initial antiretroviral therapy (ART) strategies. A random subset (n = 491) had baseline testing for drug-resistance mutations performed by use of standard sequencing methods. Ultra-deep sequencing was performed on samples that had sufficient viral content (N = 264). Proportional hazards models were used to compare rates of VF for those who did and did not have mutations identified. RESULTS: Mutations were detected by standard and ultra-deep sequencing (in 14% and 28% of participants, respectively; P < .001). Among individuals who initiated treatment with an ART regimen that combined nucleoside and nonnucleoside reverse-transcriptase inhibitors (hereafter, "NNRTI strategy"), all individuals who had an NNRTI-resistance mutation identified by ultra-deep sequencing experienced VF. When these individuals were compared with individuals who initiated treatment with the NNRTI strategy but who had no NNRTI-resistance mutations, the risk of VF was higher for those who had an NNRTI-resistance mutation detected by both methods (hazard ratio [HR], 12.40 [95% confidence interval {CI}, 3.41-45.10]) and those who had mutation(s) detected only with ultra-deep sequencing (HR, 2.50 [95% CI, 1.17-5.36]). CONCLUSIONS: Ultra-deep sequencing identified a significantly larger proportion of HIV-infected, treatment-naive persons as harboring drug-resistant viral variants. Among participants who initiated treatment with the NNRTI strategy, the risk of VF was significantly greater for participants who had low- and high-prevalence NNRTI-resistant variants.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Farmacorresistência Viral , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Adulto , Doença Crônica , DNA Complementar/química , Progressão da Doença , Feminino , Variação Genética , HIV-1/genética , Humanos , Masculino , Mutação , RNA Viral/genética
11.
Nat Biotechnol ; 26(10): 1117-24, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18846085

RESUMO

The 454 Sequencer has dramatically increased the volume of sequencing conducted by the scientific community and expanded the range of problems that can be addressed by the direct readouts of DNA sequence. Key breakthroughs in the development of the 454 sequencing platform included higher throughput, simplified all in vitro sample preparation and the miniaturization of sequencing chemistries, enabling massively parallel sequencing reactions to be carried out at a scale and cost not previously possible. Together with other recently released next-generation technologies, the 454 platform has started to democratize sequencing, providing individual laboratories with access to capacities that rival those previously found only at a handful of large sequencing centers. Over the past 18 months, 454 sequencing has led to a better understanding of the structure of the human genome, allowed the first non-Sanger sequence of an individual human and opened up new approaches to identify small RNAs. To make next-generation technologies more widely accessible, they must become easier to use and less costly. In the longer term, the principles established by 454 sequencing might reduce cost further, potentially enabling personalized genomics.


Assuntos
Mapeamento Cromossômico/instrumentação , Genoma Humano/genética , Genômica/instrumentação , Análise de Sequência de DNA/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Análise de Sequência de DNA/métodos , Avaliação da Tecnologia Biomédica
12.
Cell ; 134(3): 416-26, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18692465

RESUMO

A complete mitochondrial (mt) genome sequence was reconstructed from a 38,000 year-old Neandertal individual with 8341 mtDNA sequences identified among 4.8 Gb of DNA generated from approximately 0.3 g of bone. Analysis of the assembled sequence unequivocally establishes that the Neandertal mtDNA falls outside the variation of extant human mtDNAs, and allows an estimate of the divergence date between the two mtDNA lineages of 660,000 +/- 140,000 years. Of the 13 proteins encoded in the mtDNA, subunit 2 of cytochrome c oxidase of the mitochondrial electron transport chain has experienced the largest number of amino acid substitutions in human ancestors since the separation from Neandertals. There is evidence that purifying selection in the Neandertal mtDNA was reduced compared with other primate lineages, suggesting that the effective population size of Neandertals was small.


Assuntos
Evolução Molecular , Fósseis , Hominidae/genética , Análise de Sequência de DNA/métodos , Animais , Sequência de Bases , Osso e Ossos/metabolismo , Croácia , Ciclo-Oxigenase 2/química , DNA Mitocondrial/genética , Genoma Mitocondrial , Humanos , Modelos Moleculares , Dados de Sequência Molecular
13.
Nature ; 452(7189): 872-6, 2008 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-18421352

RESUMO

The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of 'genomic medicine'. However, the formidable size of the diploid human genome, approximately 6 gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels. This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. Comparison of the sequence to the reference genome led to the identification of 3.3 million single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. In addition, we accurately identified small-scale (2-40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5 million base pairs. Overall, these results agree well with recent results of sequencing of a single individual by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. This is the first genome sequenced by next-generation technologies. Therefore it is a pilot for the future challenges of 'personalized genome sequencing'.


Assuntos
Variação Genética/genética , Genoma Humano/genética , Genômica/métodos , Análise de Sequência de DNA/métodos , Alelos , Biologia Computacional , Predisposição Genética para Doença/genética , Genômica/economia , Genômica/tendências , Genótipo , Humanos , Individualidade , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Alinhamento de Sequência , Análise de Sequência de DNA/economia , Software
15.
Nature ; 444(7117): 330-6, 2006 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-17108958

RESUMO

Neanderthals are the extinct hominid group most closely related to contemporary humans, so their genome offers a unique opportunity to identify genetic changes specific to anatomically fully modern humans. We have identified a 38,000-year-old Neanderthal fossil that is exceptionally free of contamination from modern human DNA. Direct high-throughput sequencing of a DNA extract from this fossil has thus far yielded over one million base pairs of hominoid nuclear DNA sequences. Comparison with the human and chimpanzee genomes reveals that modern human and Neanderthal DNA sequences diverged on average about 500,000 years ago. Existing technology and fossil resources are now sufficient to initiate a Neanderthal genome-sequencing effort.


Assuntos
DNA/análise , DNA/genética , Fósseis , Hominidae/genética , Animais , DNA Mitocondrial/análise , DNA Mitocondrial/genética , Humanos , Filogenia , Polimorfismo Genético/genética , Densidade Demográfica , Análise de Sequência de DNA
16.
BMC Genomics ; 7: 216, 2006 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-16928277

RESUMO

BACKGROUND: Whole genome amplification is an increasingly common technique through which minute amounts of DNA can be multiplied to generate quantities suitable for genetic testing and analysis. Questions of amplification-induced error and template bias generated by these methods have previously been addressed through either small scale (SNPs) or large scale (CGH array, FISH) methodologies. Here we utilized whole genome sequencing to assess amplification-induced bias in both coding and non-coding regions of two bacterial genomes. Halobacterium species NRC-1 DNA and Campylobacter jejuni were amplified by several common, commercially available protocols: multiple displacement amplification, primer extension pre-amplification and degenerate oligonucleotide primed PCR. The amplification-induced bias of each method was assessed by sequencing both genomes in their entirety using the 454 Sequencing System technology and comparing the results with those obtained from unamplified controls. RESULTS: All amplification methodologies induced statistically significant bias relative to the unamplified control. For the Halobacterium species NRC-1 genome, assessed at 100 base resolution, the D-statistics from GenomiPhi-amplified material were 119 times greater than those from unamplified material, 164.0 times greater for Repli-G, 165.0 times greater for PEP-PCR and 252.0 times greater than the unamplified controls for DOP-PCR. For Campylobacter jejuni, also analyzed at 100 base resolution, the D-statistics from GenomiPhi-amplified material were 15 times greater than those from unamplified material, 19.8 times greater for Repli-G, 61.8 times greater for PEP-PCR and 220.5 times greater than the unamplified controls for DOP-PCR. CONCLUSION: Of the amplification methodologies examined in this paper, the multiple displacement amplification products generated the least bias, and produced significantly higher yields of amplified DNA.


Assuntos
Viés , Genômica/métodos , Técnicas de Amplificação de Ácido Nucleico , Análise de Sequência de DNA/métodos , Campylobacter jejuni/genética , Cromossomos Bacterianos , Sondas de DNA , Genoma Bacteriano , Genômica/estatística & dados numéricos , Halobacterium/genética , Estatísticas não Paramétricas
17.
Nat Med ; 12(7): 852-5, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16799556

RESUMO

The sensitivity of conventional DNA sequencing in tumor biopsies is limited by stromal contamination and by genetic heterogeneity within the cancer. Here, we show that microreactor-based pyrosequencing can detect rare cancer-associated sequence variations by independent and parallel sampling of multiple representatives of a given DNA fragment. This technology can thereby facilitate accurate molecular diagnosis of heterogeneous cancer specimens and enable patient selection for targeted cancer therapies.


Assuntos
Mapeamento Cromossômico/métodos , DNA de Neoplasias/genética , Mutação , Neoplasias/genética , Sequência de Bases , Humanos , Dados de Sequência Molecular , Neoplasias/diagnóstico , Sensibilidade e Especificidade
18.
Nat Methods ; 3(7): 541-3, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16791212

RESUMO

Three protocols in this issue highlight applications of emulsification procedures, which deliver high-throughput potential to the molecular biology laboratory, without the need for automation. These procedures have already generated interesting results and spurred the development of exciting new technologies, while requiring only readily available laboratory equipment.


Assuntos
Biologia/métodos , Reatores Biológicos , Emulsões , Procedimentos Analíticos em Microchip , Projetos de Pesquisa
19.
Nat Biotechnol ; 22(1): 78-85, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14704708

RESUMO

Although genome-scale technologies have benefited from statistical measures of data quality, extracting biologically relevant pathways from high-throughput proteomics data remains a challenge. Here we develop a quantitative method for evaluating proteomics data. We present a logistic regression approach that uses statistical and topological descriptors to predict the biological relevance of protein-protein interactions obtained from high-throughput screens for yeast. Other sources of information, including mRNA expression, genetic interactions and database annotations, are subsequently used to validate the model predictions without bias or cross-pollution. Novel topological statistics show hierarchical organization of the network of high-confidence interactions: protein complex interactions extend one to two links, and genetic interactions represent an even finer scale of organization. Knowledge of the maximum number of links that indicates a significant correlation between protein pairs (correlation distance) enables the integrated analysis of proteomics data with data from genetics and gene expression. The type of analysis presented will be essential for analyzing the growing amount of genomic and proteomics data in model organisms and humans.


Assuntos
Regulação da Expressão Gênica , Genoma , Proteoma , Algoritmos , Animais , Divisão Celular , Análise por Conglomerados , Bases de Dados como Assunto , Humanos , Camundongos , Modelos Teóricos , Testes de Precipitina/métodos , Ligação Proteica , RNA Mensageiro/metabolismo , Análise de Regressão , Software , Estatística como Assunto
20.
Electrophoresis ; 24(21): 3769-77, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14613204

RESUMO

We demonstrate successful, simultaneous polymerase chain reaction (PCR) amplification of up to 300 000 discrete reactions in a novel platform, the PicoTiterPlate. In addition to elevated throughput, the PicoTiterPlate based amplifications (PTPCR) can be performed in extremely small volumes: individual reactions volumes are as low as 39.5 pL, with a total 15.3 microL reaction volume for the entire PicoTiterPlate. The bulk PTPCR product can be recovered and assayed with real-time PCR, or discrete PTPCR products can be driven to solid supports, enabling downstream applications such as translation/transcription or sequencing.


Assuntos
DNA/química , Miniaturização/instrumentação , Reação em Cadeia da Polimerase/métodos , Sequência de Bases , DNA/genética , Primers do DNA , Tecnologia de Fibra Óptica , Microscopia Eletrônica de Varredura , Miniaturização/métodos , Hibridização de Ácido Nucleico/métodos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...